
Tasty Bytes

August 18, 2024

1 ‘Tasty Bytes’ (EST. 2020) and Featured Recipe’s Influence on
Site Traffic

2 Data Validation
The data set consisted of 947 rows and 8 columns. Values with unnecessary text were cleaned
for features: Category/Servings. 52 rows had missing data for the same 4 features: Calo-
ries/Carbohydrate/Sugar/Protein; after insights garnered, records dropped resulting in 895 com-
plete rows for the whole dataframe.

• Recipe: 895 integers of Unique IDs after 52 records dropped due to null values in other
features.

• Calories/Carbohydrate/Sugar/Protein: 895 floats, 52 records with null values dropped.
• Category: 10 unique categories; 98 records labelled ‘Chicken Breast’ converted to ‘Chicken’.

No missing values.
• Servings: 4 unique integers [1,2,4,6]; 3 records had additional text dropped to allow conversion

of dtype to integer. No missing values.
• High_traffic: Target variable; feature changed into binary integers for easier processing. After

nulls dropped, 535 successes of 895 recipes.

[1]: # Start coding here...
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, precision_score, roc_auc_score
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import PowerTransformer
from sklearn.model_selection import GridSearchCV
plt.style.use('ggplot')

[2]: df = pd.read_csv('recipe_site_traffic_2212.csv',)
print(df.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 947 entries, 0 to 946

1

Data columns (total 8 columns):
Column Non-Null Count Dtype

--- ------ -------------- -----
0 recipe 947 non-null int64
1 calories 895 non-null float64
2 carbohydrate 895 non-null float64
3 sugar 895 non-null float64
4 protein 895 non-null float64
5 category 947 non-null object
6 servings 947 non-null object
7 high_traffic 574 non-null object

dtypes: float64(4), int64(1), object(3)
memory usage: 59.3+ KB
None

[3]: df.isna().sum()

[3]: recipe 0
calories 52
carbohydrate 52
sugar 52
protein 52
category 0
servings 0
high_traffic 373
dtype: int64

[4]: null_in_calories = df[df['calories'].isna()]
null_in_calories.info()
whichever records are null for calories, are also null for carbs/sugars/

↪proteins

<class 'pandas.core.frame.DataFrame'>
Index: 52 entries, 0 to 943
Data columns (total 8 columns):
Column Non-Null Count Dtype

--- ------ -------------- -----
0 recipe 52 non-null int64
1 calories 0 non-null float64
2 carbohydrate 0 non-null float64
3 sugar 0 non-null float64
4 protein 0 non-null float64
5 category 52 non-null object
6 servings 52 non-null object
7 high_traffic 39 non-null object

dtypes: float64(4), int64(1), object(3)
memory usage: 3.7+ KB

2

[5]: df['category'].unique()
'Chicken Breast' shouldn't be there

[5]: array(['Pork', 'Potato', 'Breakfast', 'Beverages', 'One Dish Meal',
'Chicken Breast', 'Lunch/Snacks', 'Chicken', 'Vegetable', 'Meat',
'Dessert'], dtype=object)

[6]: df['servings'].unique()
need to remove str 'as a snack'

[6]: array(['6', '4', '1', '2', '4 as a snack', '6 as a snack'], dtype=object)

[7]: df['high_traffic'].unique()

[7]: array(['High', nan], dtype=object)

[8]: df.describe()
#no negative values for the numeric features

[8]: recipe calories carbohydrate sugar protein
count 947.000000 895.000000 895.000000 895.000000 895.000000
mean 474.000000 435.939196 35.069676 9.046547 24.149296
std 273.519652 453.020997 43.949032 14.679176 36.369739
min 1.000000 0.140000 0.030000 0.010000 0.000000
25% 237.500000 110.430000 8.375000 1.690000 3.195000
50% 474.000000 288.550000 21.480000 4.550000 10.800000
75% 710.500000 597.650000 44.965000 9.800000 30.200000
max 947.000000 3633.160000 530.420000 148.750000 363.360000

[9]: # Data Validation and Cleaning
cdf = df.dropna(subset=['calories', 'carbohydrate', 'sugar', 'protein']).copy()
cdf.loc[:, 'category'] = cdf['category'].str.replace('Chicken Breast',␣

↪'Chicken', regex=True)
cdf.loc[:,'servings'] = cdf['servings'].str.replace('4 as a snack', '4',␣

↪regex=True)
cdf.loc[:,'servings'] = cdf['servings'].str.replace('6 as a snack', '6',␣

↪regex=True)
cdf.loc[:,'servings']= cdf['servings'].astype(int)
cdf.loc[:,'high_traffic'] = cdf['high_traffic'].notnull() #converting feature␣

↪to bool
cdf.loc[:,'high_traffic'] = cdf['high_traffic'].astype(int) #bool to binary␣

↪integer
cdf.reset_index(drop=True, inplace=True)
print(cdf.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 895 entries, 0 to 894
Data columns (total 8 columns):

3

Column Non-Null Count Dtype
--- ------ -------------- -----
0 recipe 895 non-null int64
1 calories 895 non-null float64
2 carbohydrate 895 non-null float64
3 sugar 895 non-null float64
4 protein 895 non-null float64
5 category 895 non-null object
6 servings 895 non-null object
7 high_traffic 895 non-null object

dtypes: float64(4), int64(1), object(3)
memory usage: 56.1+ KB
None

3 Exploratory Analysis
All the variables included within the dataset have had their interrelationships examined. The focus
starts with the target variable and exploring the successes prior to any model implementation.
After a heatmap shows the relationship between all the numeric variables and how there is little
to no correlation between any of the variables. Two univariate histograms are then shown, one
showing the distribution of the recipes based on calorie content and the second on protein content.
Lastly, the stacked bar graph shows a good picture of the importance of food category’s effect on
the target variable.

3.1 Target Variable - high_traffic
From the plots shown below: - 574 recipes of the original 947 recipes pulled high traffic when
featured (60.6% seen in the left plot) - After nulls dropped, 535 success from the remaining 895
recipes (count plot on the right) - Both equate to about 60% accuracy without application of any
model or algorithm

[10]: # target var - Y - high_traffic
fig, axes = plt.subplots(1,2,figsize=(15,5))
sns.countplot(df,x='high_traffic',ax=axes[0]).set(title="Target Variable's␣

↪Initial Accuracy")
sns.countplot(cdf,x='high_traffic',ax=axes[1]).set(title="Target Variable's␣

↪Accuracy after dropping nulls");

4

3.2 Numerical Variables - Calories, carbohydrate, sugar, protein, servings
• 39 of the 52 recipes that initially contained missing data had high_traffic when featured; this

suggests it is not imperative to have those features labeled for a successfull recipe, maybe
even the opposite for the case of comfort foods

• Once the dataset was cleaned from the nulls, it shows all the numeric features superficially
have no correlation and especially not with the target variable: high_traffic

• The strongest correlation seen on the heatmap below, although still very weak, is between
calories and protein. This is to be expected as it is well-known that protein is a calorie-rich
macronutrient.

[11]: #correlation heatmap
numf = ['high_traffic','calories', 'carbohydrate', 'sugar',␣

↪'protein','servings']
cdf[numf] = cdf[numf].apply(pd.to_numeric, errors='coerce')
plt.figure(figsize=(5, 4))
heatmap = sns.heatmap(cdf[numf].corr(), annot=True, cmap='coolwarm')
plt.title("Correlation Heatmap between Numeric Variables")
plt.show()

5

[12]: # Calorie and Protein Histograms
fig, axes = plt.subplots(1,2,figsize=(15,5))
sns.

↪histplot(cdf,x='calories',stat='probability',fill=False,kde=True,ax=axes[0]).
↪set(title="Distribution of recipes by Calorie Content")

sns.histplot(cdf,x='protein',stat='probability',fill=False,kde=True,ax=axes[1]).
↪set(title="Distribution of recipes by Protein Content");

6

3.3 Categorical Variable - category
• Of the 84 recipes initially submitted for Pork, 11 had null info yet were still part of the 77

pork recipes considered high_traffic
• It appears the category may be the most influential feature affecting a recipe’s popularity
• The stacked bar graph below shows how Pork/Potato/Vegetable recipes seem to always be a

hit
• (although the feature ‘servings’ could be treated as a categorical variable, it was grouped with

other numeric variables for better processing)

[13]: # bivariate stacked bar graph showing bars of category stacked by high_traffic
cdf['high_traffic'] = cdf['high_traffic'].map({0: 'Low Traffic', 1: 'High␣

↪Traffic'})
plot_data = cdf.groupby(['category', 'high_traffic']).size().

↪unstack(fill_value=0)
sns.set(style="whitegrid")
plt.figure(figsize=(8,6))
plot_data.plot(kind='bar', stacked=True, color=['#6daa9f', '#774f38'], ax=plt.

↪gca())
plt.title('Category Distribution showing Traffic Volume')
plt.xlabel('Category')
plt.ylabel('Number of Recipes')
plt.legend(title='Traffic Volume', loc='upper right')
plt.show()

7

4 Model Development
Since a binary outcome is sought after from the predictions and there is data regarding the target
variable available, this is a supervised classification problem in machine learning. A logisitic re-
gression model will first be fit to the data. The comparison model will be done via Random Forest
Classification.

To start modeling, calories/carbohydrate/sugar/protein/category/servings will be the features and
high_traffic the target variable. In addition, the following was adjusted: - Used one-hot encoding
for the categorical features - Numeric features (besides servings) scaled using PowerTransformer()
- Data was split into train and test sets - GridSearchCV used to find the best hyperparameters

[14]: onehot = OneHotEncoder()
category_encoded = onehot.fit_transform(cdf[['category']]).toarray()
category_encoded_df = pd.DataFrame(category_encoded, columns=onehot.

↪get_feature_names_out(['category']))

8

cdf = pd.concat([cdf, category_encoded_df], axis=1)
cdf.drop('category', axis=1, inplace=True)

[15]: feature_cols = ['calories', 'carbohydrate', 'sugar', 'protein','servings']
encoded_category_cols = list(category_encoded_df.columns)
feature_cols.extend(encoded_category_cols)
X= cdf[feature_cols] # Features
y= cdf['high_traffic'] # Target Variable
y= y.map({'Low Traffic': 0, 'High Traffic': 1})

[16]: scaler = PowerTransformer()
numf = ['calories', 'carbohydrate', 'sugar', 'protein']
X.loc[:, numf] = scaler.fit_transform(X[numf])

[17]: X.head()

[17]: calories carbohydrate sugar protein servings category_Beverages \
0 -1.392371 0.555369 -1.369492 -1.339950 4 0.0
1 1.156281 0.648748 -0.268283 -0.812251 1 0.0
2 -0.809689 0.345711 1.752953 -1.812703 4 1.0
3 -1.525153 -1.625851 -1.262119 -1.509840 4 1.0
4 0.848294 -1.292229 -0.773013 1.193668 2 0.0

category_Breakfast category_Chicken category_Dessert \
0 0.0 0.0 0.0
1 1.0 0.0 0.0
2 0.0 0.0 0.0
3 0.0 0.0 0.0
4 0.0 0.0 0.0

category_Lunch/Snacks category_Meat category_One Dish Meal \
0 0.0 0.0 0.0
1 0.0 0.0 0.0
2 0.0 0.0 0.0
3 0.0 0.0 0.0
4 0.0 0.0 1.0

category_Pork category_Potato category_Vegetable
0 0.0 1.0 0.0
1 0.0 0.0 0.0
2 0.0 0.0 0.0
3 0.0 0.0 0.0
4 0.0 0.0 0.0

[18]: # Preliminary Checks
print(X.shape)
print(y.shape)

9

print(X.isnull().sum())
print(X.isin([np.inf, -np.inf]).sum())
print(y.isnull().sum())
print(y.isin([np.inf, -np.inf]).sum())

(895, 15)
(895,)
calories 0
carbohydrate 0
sugar 0
protein 0
servings 0
category_Beverages 0
category_Breakfast 0
category_Chicken 0
category_Dessert 0
category_Lunch/Snacks 0
category_Meat 0
category_One Dish Meal 0
category_Pork 0
category_Potato 0
category_Vegetable 0
dtype: int64
calories 0
carbohydrate 0
sugar 0
protein 0
servings 0
category_Beverages 0
category_Breakfast 0
category_Chicken 0
category_Dessert 0
category_Lunch/Snacks 0
category_Meat 0
category_One Dish Meal 0
category_Pork 0
category_Potato 0
category_Vegetable 0
dtype: int64
0
0

[19]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,␣
↪random_state=42)

[20]: models_params = {'LogisticRegression': {'model': LogisticRegression(),'params':␣
↪{'C': [0.001, 0.01, 0.1, 1, 10, 100],

10

␣
↪'penalty': ['l1', 'l2'],

␣
↪'solver': ['liblinear']}},

'RandomForest': {'model': RandomForestClassifier(),'params':␣
↪{'n_estimators': [10, 50, 100, 200],

␣
↪'max_features': ['auto', 'sqrt', 'log2'],

'max_depth':
↪ [None, 10, 20, 30, 40, 50],

␣
↪'min_samples_split': [2, 5, 10]}}}

(‘For loop’ below may cause small lag when processing and partly due to insufficient data, the
results are not stable and consecutive)

[21]: #for model_name, mp in models_params.items():
grid_search = GridSearchCV(mp['model'], mp['params'], cv=5,␣
↪scoring='precision')
grid_search.fit(X_train, y_train)
print(f"{model_name} best parameters:", grid_search.best_params_)
#print(f"{model_name} best cross-validation score: {grid_search.best_score_:

↪.2f}")

4.1 Logistic Regression Model

[22]: log = LogisticRegression(penalty= 'l2', class_weight='balanced',C=␣
↪1,solver='liblinear')

log.fit(X_train, y_train)

[22]: LogisticRegression(C=1, class_weight='balanced', solver='liblinear')

4.2 Random Forest Classifier Model
[23]: rf =␣

↪RandomForestClassifier(n_estimators=50,max_depth=10,max_features='log2',min_samples_split=2,random_state=36)
rf.fit(X_train, y_train)

[23]: RandomForestClassifier(max_depth=10, max_features='log2', n_estimators=50,
random_state=36)

4.2.1 Feature Importances

• Based off the analysis seen below, it appears more important to keep an eye on factors in a
recipe that people dislike rather than like; as seen in the stacked bar graph before, ‘Beverages’
and ‘Breakfast’ are the least popular of the category feature and are now shown to be an
important factor potentially turning clients to other avenues.

11

• Grouping the numerical variables to turn them into categorical variables will be saved for
future analysis once more data is collected; this would most-likely show the opposing stories
of the zero-calorie trend versus the protein-focused trend.

[24]: importances = rf.feature_importances_
features = X_train.columns
indices = np.argsort(importances)
plt.title('Feature Importances')
plt.barh(range(len(indices)), importances[indices], color='b', align='center')
plt.yticks(range(len(indices)), [features[i] for i in indices])
plt.xlabel('Relative Importance')
plt.show()

5 Model Evaluation
For evaluation, Precision and ROC-AUC scores were used. Precision is chosen instead of
Accuracy in order to maximize avoidance of false positives; a false positive represents having a
recipe that is predicted to drive high traffic featured for 24 hours, when it in fact does not. A
false negative of having a popular recipe not featured is less detrimental as long as there is another
popular recipe in place. ROC AUC score will show the predicitive power of the model and its
actual usefullness.
- Precision score of 1 represents 100% precision - ROC AUC score of 1 shows the model’s positive
effectiveness in the measure of separability with 0.5 representing random-guessing - The metrics

12

show the Logistic Regression Model to be more precise as well as more effective in its
prediction capabilities

[25]: pred_lr = log.predict(X_test)
pred_rf = rf.predict(X_test)

precision_lr = precision_score(y_test, pred_lr)
precision_rf = precision_score(y_test, pred_rf)
roc_auc_lr = roc_auc_score(y_test, pred_lr)
roc_auc_rf = roc_auc_score(y_test, pred_rf)
accuracy_lr = accuracy_score(y_test, pred_lr)
accuracy_rf = accuracy_score(y_test, pred_rf)

#print("Logistic Regression Model Accuracy Score: ", accuracy_lr)
#print("Random Forest Model Accuracy Score: ", accuracy_rf)
print("Logistic Regression Model Precision Score: ", precision_lr)
print("Logistic Regression Model ROC AUC Score: ", roc_auc_lr)
print('--------------------------')
print("Random Forest Model Precision Score: ", precision_rf)
print("Random Forest Model ROC AUC Score: ", roc_auc_rf)

Logistic Regression Model Precision Score: 0.7948717948717948
Logistic Regression Model ROC AUC Score: 0.7482609191469951

Random Forest Model Precision Score: 0.7219251336898396
Random Forest Model ROC AUC Score: 0.6929809556391835

6 Business Metrics
6.0.1 Current Metrics

Primary mission of the project is to predict which recipes will produce ‘high_traffic’. This discrete
binary status is determined by whether the website experiences a significant increase in visits
— specifically, a 40% rise — on the day a recipe is featured. This metric was chosen based on
observations from the product manager.

6.0.2 Analysis of Current Metric

Although binary classification problems are usually a lot simpler to solve with various models, it
still leaves out key factors that can help lead to business growth. Already without building any
algorithm, the starting accuracy was 60%. Once the models were built, a precision score of nearly
80% was achieved as desired. There is still potential for a more refined approach that can enhance
the prediction reliability and granularity. From completing this work, identifying a popular recipe
is now easier and should help increase traffic to the company’s website, subscriptions, and revenue.

6.0.3 Proposed Improvements

1 - Adding New Features: many simple feature additions could be affecting high_traffic as
well as popularity of the recipes. - ‘time spent on page’ - measuring how engaging the actual

13

content is - ‘bounce rate’ - measuring how “repulsive” the company’s landing page is - ‘time to
make’ - measuring approximately how long it would take to prepare the recipe - ‘cost per serving’
- an important variable for cost-conscious consumers - ‘fat’ - another macro-nutrient to be familiar
with next to protein and carbohydrate - ‘ingredients’ - list of the recipe’s main ingredients - ‘date
featured’ - to check for possible correlations of recipe popularity due to calendar events

2 - From Discrete to Continuous Target Variable: if actual site visits per day were recorded,
it would then turn this from a classification problem to a regression task, making it easier to acquire
more precise predictions.

3 - New KPI - Average Hourly Revenue Rate: the new metric for the business to monitor.
- Would refer to each of the main pages of the company’s site - Will be an aggregate of the most
important features to better reflect user-engagement - Ambitious metric that measures rate of
success and can be scaled when necessary

7 Recommendations
There are many paths moving forward that can lead to a more sophisticated machine learning
model; it is recommended to roll out the following changes in a multiphase process: - Phase 1 :
Increase granularity of the current model by adding more of the simpler features listed above -
Phase 2 : Run a pilot model of the new regression model treating the target variable as the actual
number of site visits - Phase 3 : Evaluate the possibility of using feature engineering to create more
meaningful revenue-based metrics

7.1 Conclusion
The objective of 80% success in predicting popular recipes was practically reached; more important
than this are the insights gained that point out various paths that can further increase company
profits moving forward. It will be important for there to be good communication between the com-
pany’s data scientists and businessmen in order to refine the important metrics to better represent
the company’s goals.

14

	`Tasty Bytes' (EST. 2020) and Featured Recipe's Influence on Site Traffic
	Data Validation
	Exploratory Analysis
	Target Variable - high_traffic
	Numerical Variables - Calories, carbohydrate, sugar, protein, servings
	Categorical Variable - category

	Model Development
	Logistic Regression Model
	Random Forest Classifier Model
	Feature Importances

	Model Evaluation
	Business Metrics
	Current Metrics
	Analysis of Current Metric
	Proposed Improvements

	Recommendations
	Conclusion

