Tasty Bytes v2

Revamped - October 2025

1 Featured Recipe’s Effect on Traffic

This is a project that was executed towards a professional certification in Data Science. It covers a
case-study of an online business’ data being harnessed to guide business decisions. The building of the
model and its algorithm is clearly shown, as well as the effectiveness of its predictions, and what they
mean.

2 Data Validation

The data set consisted of 947 rows and 8 columns. Values with unnecessary text were cleaned for
features: Category/Servings. 52 rows had missing data for the same 4 features: Calories
/Carbohydrate/Sugar/Protein; after insights garnered, records dropped resulting in 895 complete rows
for the whole dataframe.

« Recipe: 895 integers of Unique IDs after 52 records dropped due to null values in other features.

« Calories/Carbohydrate/Sugar/Protein: 895 floats, 52 records with null values dropped. « Category: 10
unique categories; 98 records labelled ‘Chicken Breast’ converted to ‘Chicken’. No missing values.

« Servings: 4 unique integers [1,2,4,6]; 3 records had additional text dropped to allow conversion of dtype
to integer. No missing values.

« High_ traffic: Target variable; feature changed into binary integers for easier processing. After nulls
dropped, 535 successes of 895 recipes.



2.1 Initial Setup & Imports (code)

[1]: # Start coding here...
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, precision_score, roc_auc_score
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import PowerTransformer
from sklearn.model_selection import GridSearchCV
plt.style.use('ggplot')

[2]: df = pd.read_csv('recipe_site_traffic_2212.csv', )
print (df . info())

<class 'pandas.core.frame.DataFrame'>
Rangelndex: 947 entries, 0 to 946

Data columns (total 8 columns):

# Column Non-Null Count Dtype

0 recipe 947 non-null int64

1 calories 895 non-null float64
2 carbohydrate 895 non-null float64
3 sugar 895 non-null float64
4  protein 895 non-null float64
5 category 947 non-null object
6 servings 947 non-null object

7 high traffic 574 non-null object
dtypes: float64(4), int64(1), object(3)
memory usage: 59.3+ KB
None

2.2 Checking for Null Values

It is crucial to always check for null values in one’s dataset and think carefully of how to treat them. If
there is a minimum amount of missing values and there is enough data to impute new values, it is still
important to know which method to use. In this dataset, the block of missing values was proportionally
large with detailed values that could largely affect results if treated incorrectly; for this reason, the 52
rows that contained missing values for ‘calories’, ‘carbohydrate’, ‘sugar’, and ‘protein’ were dropped.



2.2.1 NaN’s from Whole Data (code)

[3]: df.ismna() .sum()

[3]: recipe 0
calories 52
carbohydrate 52
sugar 52
protein 52
category 0
servings 0

high traffic 373
dtype: int64

2.2.2 NaN’s from Calories further examined (code)

[4]: null_in_calories = df[df['calories'].isna()]
null _in_calories.info()
# whichever records are null for calories, are also null for carbs/sugars/
.proteins

<class 'pandas.core.frame.DataFrame'>
Index: 52 entries, 0 to 943
Data columns (total 8 columns):

# Column Non-Null Count Dtype
0 recipe 52 non-null int64
1 calories 0 non-null float64
2 carbohydrate 0 non-null float64
3 sugar 0 non-null float64
4 protein 0 non-null float64
5 category 52 non-null object
6 servings 52 non-null object
7 high_traffic 39 non-null object

dtypes: float64(4), int64(1), object(3)
memory usage: 3.7+ KB



2.3 Checking Unique Values (code)

[5]: df['category'].unique()
# 'Chicken Breast' shouldn't be there

[5]: array(['Pork', 'Potato', 'Breakfast', 'Beverages', 'One Dish Meal',
'Chicken Breast', 'Lunch/Snacks', 'Chicken', 'Vegetable', 'Meat',
'Dessert'], dtype=object)

[6]: df['servings'].unique()
# need to remove str 'as a snack’

[6]: array(['6', '4', '1', '2', '4 as a snack', '6 as a snack'], dtype=object)
[7]: df['high_traffic'] .unique()

[7]: array(['High', nan], dtype=object)

2.4 Data Description before Dropping Nulls (code)

[8]: df.describe()
#no negative values for the numeric features

[8]: recipe calories carbohydrate sugar protein
count 947.000000 895.000000 895.000000 895.000000 895.000000
mean  474.000000  435.939196 35.069676 9.046547  24.149296
std 273.519652  453.020997 43.949032 14.679176  36.369739
min 1.000000 0.140000 0.030000 0.010000 0.000000
25% 237.500000  110.430000 8.375000 1.680000 3.195000
50% 474.000000  288.550000 21.480000 4.550000 10.800000
75% 710.500000  597.650000 44 .965000 9.800000  30.200000

max 947.000000 3633.160000 530.420000 148.750000 363.360000



2.5
[9]:

Cleaning of the Dataset (code)

# Data Validation and Cleaning

cdf = df.dropna(subset=['calories', 'carbohydrate', 'sugar', 'protein']).copy()

cdf .loc[:, 'category'] = cdf['category'].str.replace('Chicken Breast',
.'Chicken', regex=True)

cdf.loc[:,'servings'] = cdf['servings'].str.replace('4 as a snack', '4',,
regex=True)

cdf.loc[:, 'servings'] cdf['servings'].str.replace('6 as a snack', '6',,
regex=True)

cdf.loc[:,'servings']= cdf['servings'].astype(int)

cdf .loc[:,'high_traffic'] = cdf['high_traffic'].notnull() #converting feature,
+to bool

cdf.loc[:, 'high_traffic'] = cdf['high_traffic'].astype(int) #bool to binary,
~integer

cdf .reset_index(drop=True, inplace=True)

print(cdf.info())

2.5.1 Cleaned Data Info

<cC

lass 'pandas.core.frame.DataFrame'>

RangeIndex: 895 entries, 0 to 894
Data columns (total 8 columns):

#

G G W= O

7
dt

Column Non-Null Count Dtype
recipe 895 non-null int64
calories 895 non-null float64
carbohydrate 895 non-null float€é4
sugar 895 non-null floaté4d
protein 895 non-null float64
category 895 non-null object
servings 895 non-null object

high traffic 895 non-null object
ypes: float64(4), int64(1), object(3)

memory usage: 56.1+ KB

No

ne



3 Exploratory Analysis

All the variables included within the dataset have had their interrelationships examined. The focus starts
with the target variable and exploring the successes prior to any model implementation. After a heatmap
shows the relationship between all the numeric variables and how there is little to no correlation between
any of the variables. Two univariate histograms are then shown, one showing the distribution of the
recipes based on calorie content and the second on protein content. Lastly, the stacked bar graph shows a
good picture of the importance of the food category’s effect on the target variable.

3.1 Target Variable - high_ traffic

From the plots shown below: - 574 recipes of the original 947 recipes pulled high traffic when featured

(60.6% seen in the left plot) - After nulls dropped, 535 success from the remaining 895 recipes (count

plot on the right) - Both equate to about 60% accuracy without application of any model or algorithm
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3.1.0 High Traffic Countplot (code)

[10]: # target war - Y - high_traffic
fig, axes = plt.subplots(1l,2,figsize=(15,5))
sns.countplot(df ,x='high_traffic',ax=axes[0]).set(title="Target Variable's
~Initial Accuracy")
sns.countplot(cdf,x='high_traffic',ax=axes[1]).set(title="Target Variable's,
«~Accuracy after dropping nulls");



3.2 Numerical Variable Correlations

Correlation Heatmap between Numeric Variables
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« 39 of the 52 recipes that initially contained missing data had high_ traffic when featured; this suggests it
is not imperative to have those features labeled for a successful recipe, maybe even the opposite for the

case of comfort foods

calories
protein
servings

carbohydrate

« Once the dataset was cleaned from the nulls, it shows all the numeric features superficially have no
correlation and especially not with the target variable: high_ traffic

« The strongest correlation seen on the heatmap above, although still very weak, is between calories and

protein. This is to be expected as it is well-known that protein is a calorie-rich macronutrient.



3.2.0 Correlation Heatmap (code)

[11]: | #correlation heatmap

numf = ['high_traffic‘,'calories', 'carbohydrate', 'sugar',,
,'protein’', 'servings']

cdf [numf] = cdf [numf] .apply(pd.to_numeric, errors='coerce')
plt.figure(figsize=(5, 4))
heatmap = sns.heatmap(cdf [numf].corr(), annot=True, cmap='coolwarm')
plt.title("Correlation Heatmap between Numeric Variables")
plt.show()

3.2.1 Calorie & Protein’s Correlation Examined (code)

[12]: # Calorie and Protein Histograms
fig, axes = plt.subplots(l,2,figsize=(15,5))
sns.
histplot(cdf,x='calories',stat='probability',fill=False,kde=True,ax=axes[0]).
,;set (title="Distribution of recipes by Calorie Content")
sns.histplot(cdf,x='protein',stat='probability',fill=False,kde=True,ax=axes[1]).
;set (title="Distribution of recipes by Protein Content");

Distribution of recipes by Calorie Content Distribution of recipes by Protein Content
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The graphs show the distributions of the recipes based on their calorie or protein count respectively. It
can be seen that the majority of recipes are leaning towards being light in calories, but there is a small
bump further along the X-axis indicating a trend of protein-rich (and calorie dense) recipes.



3.3 Categorical Variable - food category

« Of the 84 recipes initially submitted for Pork, 11 had null info yet were still part of the 77 pork recipes
considered high_ traffic

« It appears the category may be the most influential feature affecting a recipe’s popularity

« The stacked bar graph below shows how Pork/Potato/Vegetable recipes seem to always be a hit

« (although the feature ‘servings’ could be treated as a categorical variable, it was grouped with other
numeric variables for better processing)
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3.3.0 Bivariate Graph - Categories & Traffic (code)

[13]:

# bivariatie stacked bar graph showing bars of category stacked by high_traffic

cdf['high traffic'] = cdf['high traffic'].map({0: 'Low Traffic', 1: 'High,
Traffic'})

plot_data = cdf.groupby(['category', 'high_traffic']l).size().
unstack (fill_value=0)

sns.set(style="whitegrid")

plt.figure(figsize=(8,6))

plot_data.plot(kind='bar', stacked=True, color=['#6daa9f', '#774f38'], ax=plt.
gca())

plt.title('Category Distribution showing Traffic Volume')

plt.xlabel('Category')

plt.ylabel ('Number of Recipes')

plt.legend(title='Traffic Volume', loc='upper right')

plt.show()

4 Model Development

Since a binary outcome is sought after from the predictions and there is data regarding the target variable
available, this is a supervised classification problem in machine learning. A logistic regression model will
first be fit to the data. The comparison model will be done via Random Forest Classification.

To start modeling, calories/carbohydrate/sugar/protein/category/servings will be the features and

high_ traffic the target variable. In addition, the following was adjusted: - Used one-hot encoding for the
categorical features - Numeric features (besides servings) scaled using PowerTransformer() - Data was
split into train and test sets - GridSearchCV used to find the best hyperparameters

4.0.1 One-hot Encoding of Categorical Features (code)

[14]:

onehot = OneHotEncoder ()

category_encoded = onehot.fit_transform(cdf[['category']]).toarray()

category_encoded_df = pd.DataFrame(category_encoded, columns=onehot.
.get_feature_names_out (['category']))

cdf = pd.concat([cdf, category_encoded_df], axis=1)
cdf .drop('category', axis=1, inplace=True)



4.0.2 Mapping of X & Y (code)

[15]: | feature_cols = ['calories', 'carbohydrate', 'sugar', 'protein', 'servings']
encoded_category_cols = list(category_encoded_df.columns)
feature_cols.extend(encoded_category_cols)

X= cdf [feature_cols] # Features
y= cdf['high_traffic'] # Target Variable
y= y.map({'Low Traffic': 0, 'High Traffic': 1})

4.0.3 Power Transformer used to Scale Floats (code)
[18] : | scaler = PowerTransformer()

numf = ['calories', 'carbohydrate', 'sugar', 'protein']
X.loc[:, numf] = scaler.fit_transform(X[numf])

[17]: X.head()

[17]: calories carbohydrate sugar protein servings category_Beverages
0 -1.392371 0.555369 -1.369492 -1.339950 4 0.0
1 1.166281 0.648748 -0.268283 -0.812251 1 0.0
2 -0.809689 0.345711 1.752953 -1.812703 4 1.0
3 -1.5251563 -1.62568b61 -1.262119 -1.509840 4 1.0
4 0.848294 -1.292229 -0.773013 1.193668 2 0.0

4.0.4 Preliminary Checks (code)

(18] : | # Preliminary Checks
print(X.shape)
print(y.shape)
print(X.isnull() .sum())
print(X.isin([np.inf, -np.inf]).sum(})
print (y.isnull() .sum())
print(y.isin([op.inf, -np.inf]).sum())
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4.0.5 Train Test Split (code)

[19]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
.random_state=42)

[20] : models_params = {'LogisticRegression': {'model': LogisticRegression(),'params':,
{'G': [0.001, 0.01, 0.1, 1, 10, 100],

'penalty': ['11', '12'],
'solver': ['liblinear']}},
'RandomForest': {'model': RandomForestClassifier(),'params':,
A'n_estimators': [10, 50, 100, 200],
.,'max_features': ['auto’, 'sqrt', 'log2'],
'max_depth':

. [Nome, 10, 20, 30, 40, 501,

.'min_samples_split': [2, 5, 10]1}}}

4.1 Logistic Regression Model (code)

[22]: log = LogisticRegression(penalty= 'l12', class_weight='balanced',C=,
;1,s0lver="'1liblinear')
log.fit(X_train, y_train)



4.2 Random Forest Classifier Model (code)

[23]: |xf =,
~RandomForestClassifier(n_estimators=50,max_depth=10,max_features='log2',min_samples_split=2
rf . fit(X_train, y_train)

4.2.1 Feature Importances

« Based off the analysis seen below, it appears more important to keep an eye on factors in a recipe that
people dislike rather than like; as seen in the stacked bar graph before, ‘Beverages’ and ‘Breakfast’ are the
least popular of the category feature and are now shown to be an important factor potentially turning
clients to other avenues.

Feature Importances

protein
category_Beverages
calones

carbohydrate

sugar
category_Breakfast
category_Vegetable
category_Chicken
servings

category Pork
category_Potato
category Dessert
category_Lunch/Snacks
category_One Dish Meal
category Meat

0

=]

0 002

o
g

006 008 010 012 014 016
Relative Importance

« Grouping the numerical variables to turn them into categorical variables will be saved for future
analysis once more data is collected; this would most-likely show the opposing stories of the zero-calorie
trend versus the protein-focused trend.



4.2.2 Feature Importances (code)

[24] : | importances = rf.feature_importances_
features = ¥X_train.columns
indices = np.argsort(importances)
plt.title('Feature Importances')

plt.barh(range(len(indices)), importances([indices], color='b', align='center')
plt.yticks(range(len(indices)), [features[i] for i in indices])

plt.xlahel( 'Relative Importance' )

plt.show()

5 Model Evaluation

For evaluation, Precision and ROC-AUC scores were used. Precision is chosen instead of Accuracy in
order to maximize avoidance of false positives; a false positive represents having a recipe that is predicted
to drive high traffic features for 24 hours, when it in fact does not. A false negative of having a popular
recipe not featured is less detrimental as long as there is another popular recipe in place. ROC AUC score
will show the predictive power of the model and its actual usefulness.

- Precision score of 1 represents 100% precision - ROC AUC score of 1 shows the model’s positive
effectiveness in the measure of separability with 0.5 representing random-guessing - The metrics show
the Logistic Regression Model to be more precise as well as more effective in its prediction capabilities

5.1 Model Results

Logistic Regression Model Precision Score: 0.7948717948717948
Logistic Regression Model ROC AUC Score: 0.7482609191469951

Random Forest Model Precision Score: 0.7219251336898396
Random Forest Model ROC AUC Score: 0.6929809556391835



5.2 Model Metrics (code)

[25] : pred_lr = log.predict(X_test)
pred_rf = rf . predict(X_test)

precision_lr = precision_score(y_test, pred_lr)
precision_rf = precisiun_scorﬁ(y_test, pred_rf)
roc_auc_lr = roc_auc_score(y_test, pred_lr)

roc_auc_rf = roc_auc_score(y_test, pred_rf)
accuracy_lr = accuracy_score(y_test, pred_lr)
accuracy_rf = accuracy_score(y_test, pred_rf)

o+

ic Regression Model Accuracy Score: ", accuracy_lr)

#print ("Logis

#print ("Random Forest Model Accuracy Score: ", accuracy_rf)

print("Logistic Regression Model Precision Score: ", precision_lr)

print("Logistic Regression Model ROC AUC Score: ", roc_auc_lr)

[ T ')
print("Random Forest Model Precision Score: ", precision_rf)
l::rini.("Fi:—mdc:-:n Forest Model ROC AUC Score: ", roc_auc_rf)

6 Business Metrics

6.0.1 Current Metrics

The primary mission of the project is to predict which recipes will produce ‘high_traffic’. This discrete
binary status is determined by whether the website experiences a significant increase in visits —
specifically, a 40% rise — on the day a recipe is featured. This metric was chosen based on observations
from the product manager.

6.0.2 Analysis of Current Metric

Although binary classification problems are usually a lot simpler to solve with various models, it still
leaves out key factors that can help lead to business growth. Already without building any algorithm, the
starting accuracy was 60%. Once the models were built, a precision score of nearly 80% was achieved as
desired. There is still potential for a more refined approach that can enhance the prediction reliability
and granularity. From completing this work, identifying a popular recipe is now easier and should help
increase traffic to the company’s website, subscriptions, and revenue.



6.0.3 Proposed Improvements

1- Adding New Features: many simple feature additions could be affecting high_ traffic as well as
popularity of the recipes. - ‘time spent on page’ - measuring how engaging the actual content is - ‘bounce
rate’ - measuring how “repulsive” the company’s landing page is - ‘time to make’ - measuring
approximately how long it would take to prepare the recipe - ‘cost per serving’ - an important variable for
cost-conscious consumers - ‘fat’ - another macro-nutrient to be familiar with next to protein and
carbohydrate - ‘ingredients’ - list of the recipe’s main ingredients - ‘date featured’ - to check for possible
correlations of recipe popularity due to calendar events

2 - From Discrete to Continuous Target Variable: if actual site visits per day were recorded, it would then
turn this from a classification problem to a regression task, making it easier to acquire more precise
predictions.

3 - New KPI - Average Hourly Revenue Rate: the new metric for the business to monitor. - Would refer to
each of the main pages of the company’s site - Will be an aggregate of the most important features to
better reflect user-engagement - Ambitious metric that measures rate of success and can be scaled when
necessary

7 Recommendations

There are many paths moving forward that can lead to a more sophisticated machine learning model; it is
recommended to roll out the following changes in a multiphase process: - Phase 1 : Increase granularity
of the current model by adding more of the simpler features listed above - Phase 2 : Run a pilot model of
the new regression model treating the target variable as the actual number of site visits - Phase 3 :
Evaluate the possibility of using feature engineering to create more meaningful revenue-based metrics

~.1 Conclusion

The objective of 80% success in predicting popular recipes was practically reached; more important than
this are the insights gained that point out various paths that can further increase company profits moving
forward. It will be important for there to be good communication between the company's data scientists
and businessmen in order to refine the important metrics to better represent the company’s goals.
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